MARTHE has been developed by the BRGM for 3D modelling of flows and mass and energy transfers in hydro-systems. Modelling includes aquifers, rivers and vadose zones.

MARTHE (acronym for Modélisation d'Aquifères avec un maillage Rectangulaire, Transport et HydrodynamiquE) is designed for 2D or 3D modelling of flows and transfers in aquifer systems, including climatic, human influences and possible geochemical reactions.

Description of the MARTHE computer code

MARTHE is an application for computing pollutant and energy flows and transport in porous environments (in aquifers) developed at the BRGM. This application, based on the finite volumes method, is a complete code incorporating:

  • single-layer and multi-layer aquifers and 3D,
  • hydrographic networks (rivers, other waterways, drainage),
  • exchanges with the atmosphere (rain, snow, evapotranspiration).

The calculations may also include:

  • mass transfer, for water quality protection,
  • temperature effects,
  • influence of salinity,
  • degradation of pollutants,
  • transfers through the vadose zone,
  • geochemical interactions.

MARTHE: areas of application

MARTHE is designed to model fluid flow and transfer issues in different contexts:

Management of aquifer resources

  • Assessment of water budget components in an aquifer system: rainwater recharge, lateral input from catchment areas, underground circulation and associated flows, year-on-year fluctuations, seasonal storage and release,
  • Hydrodynamic impacts of existing or planned structures: pumping, irrigation, drainage, gravel beds, retention basins,
  • management and optimisation of catchments,
  • studies of the influence of climate variability and predicted climate change impacts,
  • diagnoses of groundwater pollution,


  • Pollutant infiltration into the vadose zone, percolation to the aquifer followed by groundwater migration,
  • simulation of a pollution plume released from a contaminated zone: pathlines, velocities, downstream concentrations.Modelling hydraulic scenarios for confinement or decontamination,
  • impacts of domestic and industrial landfill on groundwaters,
  • studies of underground storage confinement.

Civil engineering and mining

  • dewatering of excavations
  • hydraulic effects of impermeable walls,
  • below-ground worksites (underground, car parks, tunnels),
  • calculation of mine dewatering and corresponding drawdown.
The blue-green water in this limestone formation, Oman

MARTHE functions

MARTHE technical product description with main functions.

General functions

  • 1D, 2D or 3D ("full 3D") grids.
  • Calculations by finite volumes on structured grids with possibilities for nested grids.
  • Single or multilayer aquifers (layered aquifers, sometimes separated by a semi-permeable aquitard).
  • Unconfined, confined or semi-confined aquifers in steady or non-steady state.
  • Calculations may include discontinuities such as open water bodies (lakes, gravel pits), local aquifer depletion (and subsequent recharge), including in multilayer aquifers, groundwater flooding (rivers, springs, drains), impermeable walls (sheet pile walls, etc.).
  • Automatic limitation of pumping rates as pump heads are uncovered.
  • Calculation of well hydraulic head according to well diameter compared to the size of the grid cell containing it.
  • Full coupling with hydrographic systems (rivers, drains).
  • Coupled hydro-climatic calculations for rain, evapotranspiration, infiltration and runoff: the GARDENIA computing procedure.
  • Horizontal and vertical anisotropism of permeable areas.
  • Calculation of (direct and reverse) pathlines in steady or non-steady state.


  • The field corresponding to each layer to be modelled is discretised into a structured rectangular tartan grid.
  • The width of each line and column may differ with local heterogeneity, the density of available information and the level of accuracy required.
  • The grid can be further refined locally with nested sub-grids.
  • Grids can be in vertical cross-sections or radial (cylindrical coordinates).
  • Depending on configurations, grids with over a million cells can be handled by a 32-bit computer (0.5 million cells with transport).With 64-bit computers, the maximum cell number depends purely on the physical memory installed.
  • Maximum potential capacity:
    • 3000 columns, 3000 rows, 999 layers, 99 nested layers.
    • Unlimited calculation time steps.

Hydrodispersive transport

  • Hydrodispersive migration of an effuent in the aquifer and the vardose zone.
  • Calculations use the TVD method ("Total Variation Diminishing"), the MOC method (Method of Characteristics) or the Finite Differences method.
  • Chain-reaction degradation
  • Retardation factor, kd partition coefficient (adsorption-desorption)
  • Sorption by Langmuir or Freundlich isotherm.
  • Possibilities for control of injection well concentration by production well concentration,
  • Reactive transport with PHREEQC (USGS) geochemical modules.

Non Saturated Zone, Density effects, Temperature

  • Continuous flow and transfer in the saturated zone and the vadose zone.
  • Energy transfers, water temperature calculations.
  • Density effects due to variations in salinity and/or water temperatures.
  • Influence of temperature on viscosity and degradation coefficient taken into account.
  • Possibility for control of injection well temperature by production well temperature (geothermal doublets).

Automatic grid adjustment, sensitivity analyses

  • Automatic calibration of model parameters, defined per homogeneous zone or per grid cell.
  • Sensitivity analysis to the calibrated parameters.

Specific applications

  • Vertical fracturing simulated by equivalent transmissivity.
  • Gallery networks taken into account.
  • Diphase flows with non-miscible phases: freshwater and salt water, water and air, water and "oil".
  • Gas flows.
  • Vegetation growth taken into account.

Visualisation, import and export

  • Pre-processor and post-processor through graphic interface
  • Detailed "help" file
  • Input interface with 3D modellers:Multilayer ®, GDM ®, EarthVision ®, Éclipse ®, Surfer ®.
  • Export to Mapinfo ®, Paraview, Tecplot ®, Winteracter-3Dview ®, Vrml QGis, ArcGis  ® for 3D displays.
  • Export to Mapinfo ®, QGis, ArcGis ®, Surfer ® for 2D displays.
  • Export to Microsoft Excel ® to display series.

Calculations in non-steady state

Any grid-cell information can be modified at each calculation time step:

  • hydraulic head, temperature, concentration, salinity,
  • pumping and injection flow rates, rainfall, potential evapotranspiration, air temperature, recharge,
  • permeability, porosity, riverbank clogging, extent of hydrographic network or drains,
  • topographic elevation,
  • setting or release of prescribed hydraulic heads,
  • etc.
The lake of the Franco-Swiss dam, Switzerland

Licencing conditions

Different versions of MARTHE software may be licenced for use with Windows XP, 7, 8 or 10.

Conditions / pricing (June 2016)

Full version

Including transport, temperature, density, non-saturated zone, PHREEQC geochemistry, etc.

  • Single-user licence:7900 € (excl. VAT)
  • Subsequent licences:4650 € (excl. VAT)
  • Email assistance and maintenance (if required):15 % per year (*)
  • Licences for universities and public research organisations: please contact us

(*) Email assistance: advice, and answers to specific questions, mainly for starting up the software: e.g. choosing modelling parameters, digital patterns and limit conditions; meanings of terms used in the files, etc.

Email assistance does not include questions concerning the site to be modelled, hydrogeological issues, etc.

Maintenance consists of supplying more recent upgraded versions (about one every 6 months). 

Limited version

Calculation of hydraulic heads, flow and pollutant transport and PHREEQC geochemistry only.

  • Single-user licence:4000 € (excl. VAT)
  • Subsequent licences:2300 € (excl. VAT)
  • Email assistance and maintenance (if required):15 % per year (*)

"Free access" version

  • Calculation of hydraulic heads, flow and pollutant transport and PHREEQC geochemistry only; limited capacity
  • 40 000 grid cells (total size of the computed parallelipiped) [full version: over one million]
  • 300 columns [full version:3000]
  • 300 rows [full version:3000]
  • 7 layers [full version:999]
  • 9 nested grids [full version:99]
  • 30 000 calculation time steps [full version: unlimited]

Email or telephone assistance is not provided for the free version.


Because MARTHE is a very comprehensive code, you will need a little time to master it.  We therefore regularly organise training sessions at Orleans, for beginner and advanced levels.

The resurgences of the cirque of Choranche, Isère

Advantages of MARTHE over other referenced computing codes

MARTHE software has a number of advantages over other referenced computing codes (as of June 2016).


Dialogs, input-output available also in French language Y - - -
Layers that can bevel and disappear, like real geological layers Y - - Y
Changes in any field (geometry, permeability, watercourses, boundary conditions) being calculated, at any calculation time step Y - (y) -
Water systems (rivers) fully coupled with aquifers Y Y -* -
Hydro climatic balance (Rainfall, PET, snowmelt, runoff to streams, infiltration) Y - - -
Coupled nested grids system for flow and transport. Y -* Y Y
Simultaneous energy transfers and transport of mass and salinity: allows the influence of temperature on the density and salinity Y -* Y Y
Mass (and energy) transport fully coupled, into an executable which avoids very large files and enables a high efficiency Y - Y Y
Energy transfer with an analytical solution (Vinsome) in the wall rocks: greatly reducing the number of meshes Y - - Y
Modeling of the continuum Vadose Zone - Saturated Zone (Richards equation) Y - Y Y
Modeling of "unconfined aquifers" using hydraulic heads and ground surface overflow conditions. Y Y Y -
In “unconfined aquifer” simulations: efficient scheme for cell “drying/re-wetting” with no problem in all cases. Y -* Y Y
Pumping rate limited according to screen elevation or dewatering. Y Y Y -
Calculation of hydraulic head into the wells, using the well diameter to cell size ratio. Y Y - -
Transport with dispersion (use of dispersivity). Y Y Y -
TVD and MOC transport schemes. Y Y - -
Nitrate balance in soil (fertilizer applications, crop needs, soil mineralization). Y - - -
Crop leaf and root development. Evapotranspiration function of hydric stress. Y Y - -
Grids of more than a million cells on a desktop computer. Y Y Y -
Automatic connection of the temperature of water of an injection well to that of a production well. Particularly useful for the simulation of geothermal doublets. Y - Y -
Automatic connection of the concentration in water of an injection well to that of a production well. Enables to simulate water reuse schemes. Y - - -
Reactive transfer with PHREEQC geochemical modules Y - Y -
Complex multiphase flow calculation with phase change and exchanges between phases - - - Y
Possibility of very refined discretization - - Y Y

Y = Yes: The feature is available.
(y) = Available by programming interfaces.
- = Not available to our knowledge.
-* = May be available in some versions.

The comparison applies to the standard version of the codes (e.g. MODFLOW from USGS), and uses information from the official user’s guides.

A karstic spring, Pahalgam

Licence holders

MARTHE is used by public organisations, universities and engineering consultancies.Below is a non-exhaustive list of organisations holding one or more MARTHE user licences.
  • CEA - Cadarache
  • CEA - IPSN
  • EDF / SQR Aix en Provence
  • LECES Consultancy
  • ECOSYST Consultancy
  • SOLVAY - Brussels
  • URS France, Paris office
  • SUEZ Environnement
  • Société Anonyme des Eaux Minérales d'ÉVIAN. DANONE
  • EGIS Structures & Environnement - Egis Géotechnique
  • SÉVÊQUE ENVIRONNEMENT, Nord Pas de Calais agency
  • Wroclaw Municipal Water and Sewage Company, Pologne
  • Seine Normandie Water Agency - Direction Territoriale et Maritime des Rivières de Basse Normandie
  • DIREN Nord-Pas-de-Calais
  • Agence de Bassin Seine Normandie AESN Caen
  • DREAL, Caen
  • Lille Métropole Communauté urbaine (LMCU)
  • Chambre d’Agriculture de l’Aisne
  • Communauté urbaine du Grand Lyon
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra
  • Chott-Mariem Higher School of Agronomy, Tunisia
  • University of São Paulo, Brazil
  • University of Pernambuco, Recife, Brazil
  • University of Mons – Fundamental and Applied Geology, Belgium
  • Institute of Geology, Estonia
  • EGID Bordeaux 3
  • UTC Compiègne
  • IEEA Wroclaw University, Poland
  • École des Mines de Paris / CIG
  • École des Mines de Nancy / LAEGO
  • University of Avignon and the Vaucluse
  • University of Neuchâtel
  • EPFL, Lausanne
  • Andra Pradesh Groundwater Dept., India
  • Ministry of Defence of Ukraine
  • Institute of Geological Sciences of Ukraine
  • Agence de Bassin Seine Normandie (AESN), Paris
  • REGIDESO (Democratic Republic of Congo)

This list does not include organisations using the limited "free access" version of MARTHE.

At the Nez de Jobourg, Manche

Downloadable documentation

The documentation for MARTHE is supplied at the time of installation. See below for the most recent documentation files.
Note: Dialog box, inputs and outputs of the software are in English; however the documentation and help files are in French, with the exception of the English version of the tutorial.
The Sautadet falls, Gard

Reference publications on MARTHE

List of selected publications on studies conducted with MARTHE software
  1. Castillo, C., Kervévan, C., Thiéry, D. 2014 - Geochemical and reactive transport modeling of the injection of cooled Triassic brines into the Dogger aquifer (Paris basin, France). Geothermics journal 53 (2015) 446-463.
  2. Habets, F.,  Boé, J., Déqué, M., Ducharne, A., Gascoin, S., Hachour, A., Martin, E., Pagé, E., Sauquet, E., Terray, L., Thiéry, D., Oudin, L., Viennot, P. 2013 - Impact of climate change on the hydrogeology of two basins in Northern France. Climatic Change journal. Online version : doi:10.1007/s10584-013-0934-x.
  3. Thiéry, D., Picot-Colbeaux, G., Amraoui, N., Hamm, V., Dumon, A. 2012 – Gestion active des ressources en eau souterraines de l’île de Grande-Terre (Guadeloupe). Dix-huitièmes journées techniques du Comité Français d’Hydrogéologie de l’Association Internationale des Hydrogéologues. "Ressources et gestion des aquifères littoraux. Cassis 2012.". Proceedings pp. 133-138.
  4. Thiéry, D., Amraoui, N., Gomez, E., Pédron, N., Seguin, J.J. 2011 - Regional model of groundwater management in North Aquitania aquifer system: Water resources optimization and implementation of prospective scenarios taking into account climate change.  In Water Security in the Mediterranean Region, NATO Science for Peace and Security Series C: Environmental Security. pp. 275-290. eds. A. Scozzari & B. El Mansouri. DOI 10.1007/798-94-007-1623-0.
  5. Thiéry, D. 2010. Modélisation des écoulements souterrains en milieu poreux avec MARTHE. in Traité d'hydraulique environnementale - Volume 9 - Logiciels d’ingénierie du cycle de l’eau. Tanguy J.M. (Ed.) - Éditions Hermès - Lavoisier. Chapitre 4 pp. 77-94. ISBN 978-2-7462-2339-4.
  6. Thiéry, D. 2010. Groundwater Flow Modeling in Porous Media Using MARTHE. in “Modeling Software Volume 5, Chapter 4, pp. 45-60 - Environmental Hydraulics Series”. Tanguy J.M. (Ed.) – Éditions Wiley/ISTE London. ISBN: 978-1-84821-157-5.
  7. Thiéry, D. 2010 – Interaction between Surface and Subsurface Flows: Somme Basin. in “Practical Applications in Engineering: Volume 4, chapter 13, pp. 143-156 • Environmental Hydraulics Series”. Tanguy J.M. (Ed.) – Éditions Wiley/ISTE London. ISBN: 978-1-84821-156-8.
  8. Habets, F., Gascoin, S., Korkmaz, S., Thiéry, D., Zribi, M., Amraoui, N., Carli, M., Ducharne, A., Leblois, E., Ledoux, E., Martin, E., Noilhan, J., Ottlé, C., Viennot, P. 2010 – Multi-model simulation of a major flood in the groundwater-fed basin of the Somme River (France). Hydrol. Earth Syst. Sci. journal, 14,  99-117, 2010
  9. Thiéry, D., Jacquemet, N., Picot-Colbeaux, G., Kervévan, C., André, L., Azaroual, M. 2009 - Validation of MARTHE-REACT coupled surface and groundwater reactive transport code for modeling hydro systems. Proceedings of the TOUGH Symposium 2009. LBNL, Berkeley, Calif. Sept. 2009 pp 576-583.
  10. Picot-Colbeaux G., Pettenati M., Thiéry D., Kervévan C., André L., Azaroual M. 2009 - Numerical modeling of fluid-rock chemical interactions during CO2 saturated water injection into a sandstone reservoir, using the MARTHE-REACT code. Proceedings of the TOUGH Symposium 2009. LBNL, Berkeley, Calif. Sept. 2009, pp. 80-87.
  11. Visser, A., Dubus, I., Broers, H.P., Brouyère, S., Marek, K., Orban, P., Goderniaux, P., Batlle-Aguilar, J., Surdyk, N., Amraoui, N., Job, H., Pinault, J.L., Bierkens, M. 2009. Comparison of methods for the detection and extrapolation of trends in groundwater quality. J. Environ. Monit., 2009, 11, 2030-2043.
  12. Barthélemy Y., Béon O., Le Nindre YM., Munaf S., Poitrinal D., Gutierrez A., Vandenbeusch M., Al Shoaibi A., Wijnen M.. 2006. Modelling of the Saq aquifer system (Saudi Arabia). Proceedings of the AIH international workshop - Dijon - France - 30 April - 2 May 2006.
  13. Noyer M.-L., Elsass P. 2006. Modelling aquifer salinity in the Potash Basin (Alsace). Proceedings of the AIH international workshop - Dijon - France - 30 April - 2 May 2006.
  14. Ahmed, S., J.C. Maréchal, E. Ledoux and G. de Marsily 2006 - Groundwater Flow Modeling In Hard-Rock Terrain In Semi-Arid Areas: Experience From India, a Chapter (Chapter XI) in a Book On G-WADI, H. Wheater, S. Sooroshian and KD Sharma (eds.), Cambridge University Press, 54 pages.
  15. Thiéry, D., Gutierrez, A. 2006 - From modelling soil columns to large scale aquifers: an illustration of the MARTHE code capabilities. Proceedings of the 6th international workshop on Porous Media. Blauberen (Germany) Dec. 2006.
  16.  WeinthaL, E., Vengosh, A., Marei, A., Gutierrez, A., Kloppmann, W. The Water Crisis in the Gaza Strip: Prospects for Remediation. Ground Water Vol 63, n°5, Sept-Oct 2005
  17. Mouvet C., Albrechtsen H.J., Baran N. , Chen t., Clausen L., Dubus I.G., Douguet J.-M., Esposito A., Fialkiewicz W., Gutierrez A., Haverkamp R., Herbst M., Howles D., Jarvis N.J., Jørgensen P.R., Larsbo m., Meiwirth K., Mermoud A., Morvan X., Normand B., o’Connor M., Ritsema C., Roessle S., Roulier S., Soutter M., Stenemo F., Thiéry D., Trevisan M., Vachaud G., Vereecken H., Vischetti C. (2004).  Integration into effective models of process knowledge gained on the unsaturated and saturated zones: results from the PEGASE project. Proceedings of the COST 629 Workshop, Rome May 5-7, ISBN 88-7830-387-9, pp. 211-226.
  18. Thiéry D. 2005 – Saltwater intrusion modelling with an efficient multiphase approach: Theory and several field applications. In: Groundwater and saline intrusion. Selected papers from the 18th Salt Water Intrusion Meeting 18 SWIM Carthagena 2004. Eds. L. Araguas, E. Custodio and M. Manzano, ISBN 84-7840-588-7, pp. 97-110.
  19. Herbst, M., W. Fialkiewicz, T. Chen, T. Pütz, D. Thiéry, C. Mouvet, G. Vachaud, and H. Vereecken. 2005. Intercomparison of flow and transport models applied to vertical drainage in cropped lysimeters. Vadose Zone J. 4:240–254.
  20. Vanderborght, J., Kasteel, R., Herbst, M., Javaux, M., Thiéry, D., Vanclooster, M., Mouvet, C. & Vereecken, H. 2005. A Set of Analytical Benchmarks to Test Numerical Models of Flow and Transport in Soils. Vadose Zone J. 4:206-221.
  21. Sergent, P., Zhang, B., Thiéry D. et Ouahsine, A. 2005 - Calcul des remontées de nappe derrière un remblai routier lors d’une crue exceptionnelle de la Moselle à Remiremont. 17ème Congrès Français de Mécanique, Troyes, Sept. 2005.
  22. Thiéry D., Golaz, C., Gutierrez A., Fialkiewicz W., Darsy C., Mouvet C. & Dubus I.G. 2004 - Refinements to the MARTHE model to enable the simulation of the fate of agricultural contaminants from the soil surface to and in groundwater. Proceedings of the COST international workshop, Saturated and unsaturated zone: integration of process knowledge into effective models, Rome, Italy, 5-7 May 2004.
  23. Guyonnet, D., Neville, C., Seguin, J.-J. (2003) - On analytical solutions for screening calculations of solute transport in groundwater. Journal of Contaminant Hydrology (soumis).
  24. Golaz C., Thiéry D., Mouvet C. 2002 – Comparison of LEACHP and MARTHE 6.0 simulations of water flow and solute transport in the unsaturated zone using the Vredepeel data set. XII Symposium on Pesticide Chemistry, Piacenza, June 4-6th 2003
  25. Thiéry D. et Amraoui N. 2001 - Hydrological modelling of the Saone basin. Sensitivity to the soil model. Physics and Chemistry of the Earth Journal, Part B Vol 26 (5-6) pp. 467-472 April 2001.
  26. Kloppmann W., Thiéry D., Kervevan C., Bourguignon A., Negrel P., Casanova J. 2001 - Chemistry-transport coupled modelling of the Äspö groundwater system (Sweden) since the last glaciation. Water-Rock Interaction 2001, Cidu (ed.), A.A. Balkema (Swets & Zeitlinger), Lisse, 181-184.
  27. Guyonnet, D., Perrochet, J.-J., Come, B., P., Seguin, Parriaux, A. 2001 - On the hydro-dispersive equivalence between multi-layered mineral barriers. Journal of Contaminant Hydrology 51, pp. 215-231.
  28. Guyonnet, D., Amraoui, N., Kara, R. (2000) - Analysis of transient data from infiltrometer tests in fine-grained soils. Ground Water Vol.38 No.3, pp.396-402.
  29. Thiéry D. et Guedeney K. 1999 - Multiphase Modelling of a Gas Storage in Aquifer with Automatic Calibration and Confidence Limits. Communication présentée à la conférence internationale ModelCARE 99 “ Calibration and Reliability in groundwater Modelling ” Zurich sept. 1999.
  30. Kervévan C., Baranger. P. et Thiéry D. 1999 - Une approche originale de la modélisation couplée Hydrodynamique - Transport - Chimie basée sur l’utilisation de Simulateurs Chimiques Spécifiques (SCS). Communication présentée au congrès “ Stabilisation des déchets et environnement 1999 ” Lyon Villeurbanne (France) 13 - 16 avril 1999
  31. Kervévan C., Thiéry D. et Baranger. P. 1998 - SCS: Specific Chemical Simulators dedicated to chemistry-transport coupled modelling Part III - Coupling of SCS with the hydro-transport modelling software MARTHE. Goldschmidt Conference Toulouse Sept.1998. Abstracts Volume p.p. 773-774 Mineralogical Magazine Vol. 62A, Parts &-3 Published by the Mineralogical Society London.
  32. Noyer M.L., Menjoz A., Thiéry D., Elsass P. et Martin J.C. 1998 - Modélisations monocouche et multicouche de la nappe d’Alsace dans la zone du Bassin Potassique. Cinquième journée technique du Comité Français de l’AIH. Strasbourg 27 novembre 1998.
  33. Thiéry D., 1995 - Evaluating predictive reliability of groundwater models by sensitivity analysis: Colloque UNESCO en l'honneur de J. Bernier. Paris, sept. 1995.
  34. Gutierrez A., 1996 - Évaluation des ressources en eau souterraine de l’île de Malte. Documents du BRGM n° 253. Coll. Eau-Environnement-Aménagement. Éditions du BRGM.
  35. Thiéry D., Schwartz J., Berge J., Fotoohi F., Konstantopedos K. et Lambert M., 1995 - Un système d'aide à la gestion des ressources en eaux souterraines. Application au site de Bordeaux. Revue Hydrogéologie n° 1, pp. 129-139
  36. Thiéry D., 1995 - Transport modelling by particles tracking in complex systems: 3D heterogeneous, unsaturated zone and density dependence. Poster présenté au colloque AIHS - Groundwater Qualité : Remediation and Protection - GQ95, Prague, mai 1995.
  37. Thiéry D., 1994 - Calibration of groundwater models by optimization of parameters in homogeneous geological zones in "Stochastic and Statistical methods in hydrology and environmental engineering". Kluwer Academic Publishers (The Netherlands) - Vol. 2, pp. 6982 K.W. Hipel (ed.).
  38. Thiéry D., 1994 - Automatic calibration of groundwater models by the head gradient method. Groundwater Quality Management of the GQM 93 conf. held at Tallinn, sept. 93. IAHS Publication n° 220, 1994 pp. 281-292.
  39. Thiéry (D.), 1993 - Modélisation des aquifères complexes - Prise en compte de la zone non saturée et de la salinité. Calcul des intervalles de confiance. Revue Hydrogéologie, 1993, n° 4 pp. 325-336.
  40. Thiéry (D.), 1993.- Calage automatique des modèles hydrodynamiques maillés. Détermination de zones géographiques homogènes et des paramètres optimaux associés. Application à 5 systèmes aquifères.- Revue Hydrogéologie, 1993, n° 4 pp. 281-291.
  41. Thiéry (D.), 1993 - Evaluating Predictive Reliability of Groundwater Models by Sensitivity Analysis: GQM 93 Internat. Conf. on Groundwater Quality Management. Tallinn, Estonie. Sept. 93 - Poster volume pp. 115-126.
  42. Thiéry (D.), 1993. Tridimensional and multilayer modelling of transfers in unsaturated porous medium. GEOCONFINE Symposium international Géologie et confinement des déchets toxiques. Montpellier, juin 1993. Geoconfine 93 - Balkema Rotterdam, pp. 467-472.
  43. Thiéry (D.), 1991. Modelling contaminant transport through the unsaturated zone in transient state with a random walk particles scheme. Congrès : Modeling in groundwater resources. Proceeding of the international conference on modeling groundwater flow and pollution. Nanjing, 1991 pp 311-316.

Instructions for use are available from the InfoTerre portal

These versions in  BRGM InfoTerre portal are reference versions dated December 2015. In contrast, pdf files available in the "Documentation" section are updated versions to 1st June 2016.

  • Thiéry D. (2015a) – Code de calcul MARTHE - Modélisation 3D des écoulements dans les hydrosystèmes - Notice d’utilisation de la version 7.5. BRGM/RP-64554-FR, 306 p., 150 fig.
  • Thiéry D. (2015b) – Modélisation 3D du transport de masse et du transfert thermique avec le code de calcul MARTHE – version 7.5. BRGM/RP-64765-FR, 324 p., 158 fig.
  • Thiéry, D. (2015c) – Modélisation 3D des écoulements en Zone Non Saturée avec le code de calcul MARTHE - version 7.5. BRGM/RP-64495-FR. 87 p., 32 fig.
  • Thiéry, D. (2015d) – Modélisation 3D du Transport Réactif avec le code de calcul MARTHE v7.5 couplé aux modules géochimiques de PHREEQC. Rapport BRGM/RP-65010-FR, 164 p., 88 fig.
  • Thiéry, D. (2015e) – Didacticiel du code de calcul MARTHE v7.5. Exploration des fonctionnalités de modélisation des hydrosystèmes. Rapport BRGM/RP-64997-FR. 285 p., 177 fig.
A vent or lateral spring, Fontaine de Vaucluse

Download the free limited version of MARTHE

Fill out the form below. You will then receive an email containing a link to download the free version of the software.
* Indicates required field

Your need

Your message

Please tick the boxes for the type of information you would like to receive

Your contact details

Validate the form

To validate this form, read our data protection policy and validate the security test to confirm that you are a human user.

About the personal data collected on this form

  • Purpose of the form: enable BRGM to reply to you following a request for information on its software, or to enable you to download software made available by BRGM.
  • Users of the data provided: the departments in charge of communication and user of information systems reception, support and assistance, and software management, who may share the data with persons or departments concerned by your request in-house at BRGM and/or with subcontractors or service providers.

Your rights

Within the limits of the Regulation, in particular Articles 15 to 22 of the GDPR and having provided proof of identity, you have:

  • the right of information and access to your personal data,
  • the right to have your personal data rectified,
  • the right to delete or limit processing of your personal data.

To exercise these rights, please contact our data protection officer at:
Any request that constitutes an abuse of current laws and regulations may be rejected.
More information on the policy for third-party personal data protection