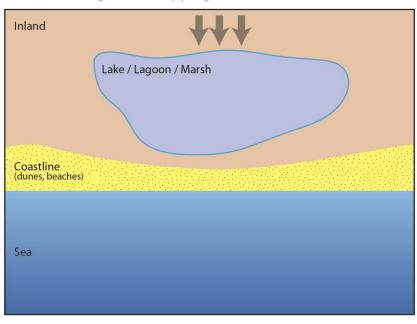
POUZET Pierre &
MAANAN Mohamed
Université de Nantes
OSUNA - OR2C - LETG

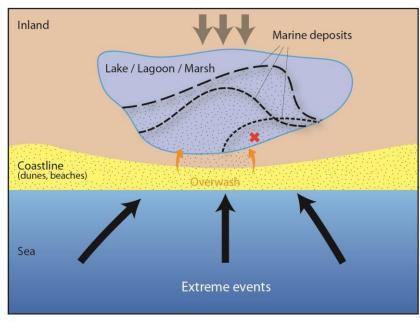

Journée séminaire du 17/12/2020 : Tempêtes et submersions historiques

Les tempêtes et submersions marines en Atlantique analysées par 1 000 années de données sédimentologiques et historiques **Pour plus d'informations :** Pouzet, P. & Maanan, M (2020b). Climatological influences on major storm events during the last millennium along the Atlantic coast of France.

Nature Scientific Reports 10, 12059

https://www.nature.com/articles/s41598-020-69069-w

SEDIMENTOLOGIE

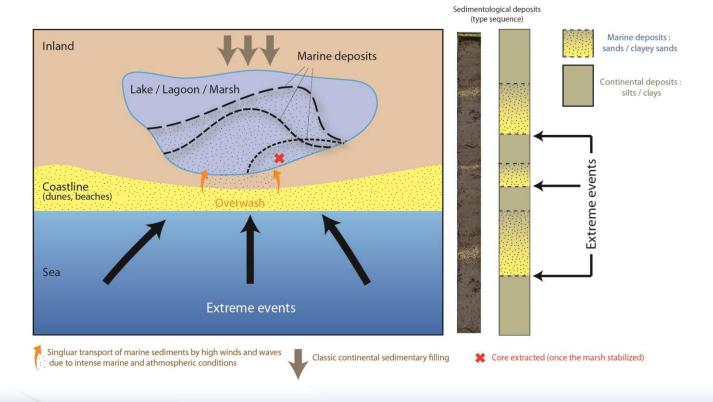


PRINCIPE THEORIQUE

SEDIMENTOLOGIE

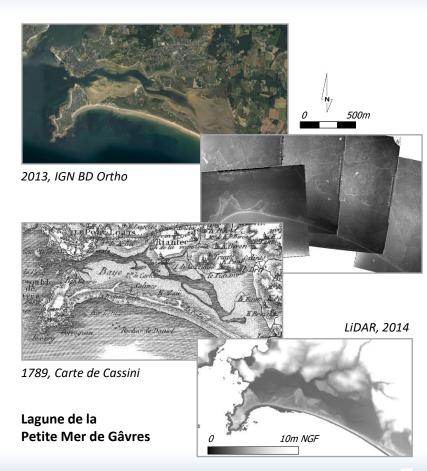
Pour plus d'informations: Pouzet, P. & Maanan, M (2020b). Climatological influences on major storm events during the last millennium along the Atlantic coast of France. Nature Scientific Reports 10, 12059 https://www.nature.com/articles/s41598-020-69069-w

Discussion


Singluar transport of marine sediments by high winds and waves due to intense marine and athmospheric conditions

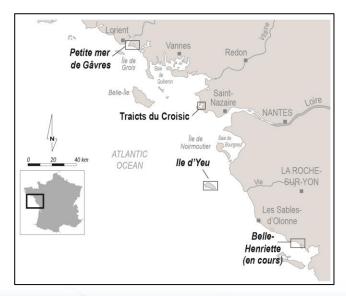
Pour plus d'informations : Pouzet, P. & Maanan, M (2020b). Climatological influences on major storm events during the last millennium along the Atlantic coast of France.

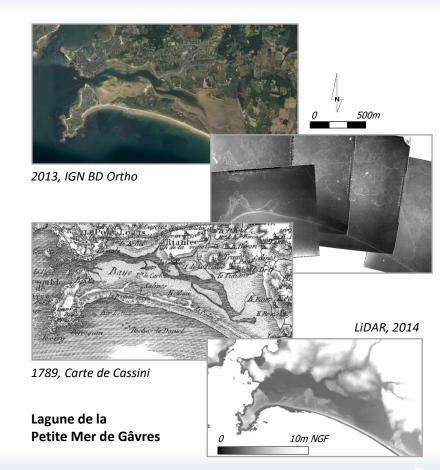
Nature Scientific Reports 10, 12059 https://www.nature.com/articles/s41598-020-69069-w


SEDIMENTOLOGIE

METHODOLOGIE DU CHOIX DES STATIONS DE PRELEVEMENT

> Etude géomatique


• Utilisation de la géomatique pour effectuer une analyse diachronique par photographies aériennes et cartographies anciennes



METHODOLOGIE DU CHOIX DES STATIONS DE PRELEVEMENT

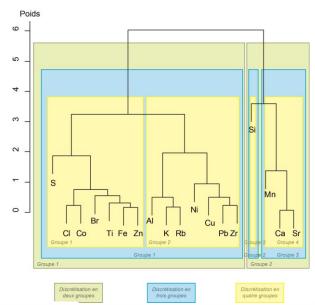
> Etude géomatique

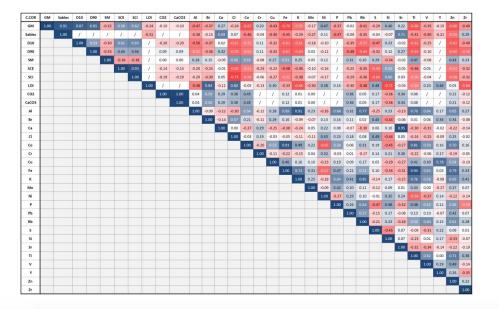
- Utilisation de la géomatique pour effectuer une analyse diachronique par photographies aériennes et cartographies anciennes
- · Lieux faiblement impactés par l'Homme, espaces protégés
- Zones de dépôt à faible altitude protégées par un cordon dunaire : Utilisation des données Lidar.

- Trois questions essentielles :
- Comment identifier une couche marine et la différencier des faciès traditionnels lagunaires, marécageux ou lacustres ?

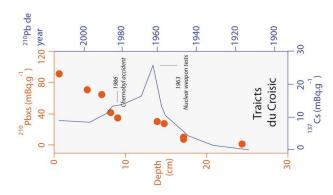
- Trois questions essentielles :
- Comment identifier une couche marine et la différencier des faciès traditionnels lagunaires, marécageux ou lacustres ?
 - Analyse statistique : nombreux indicateurs croisés pour caractériser la provenance des sédiments
 - Détection des dépôts marins allochtones aux marais

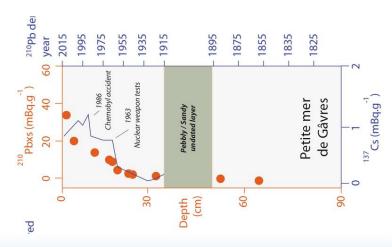




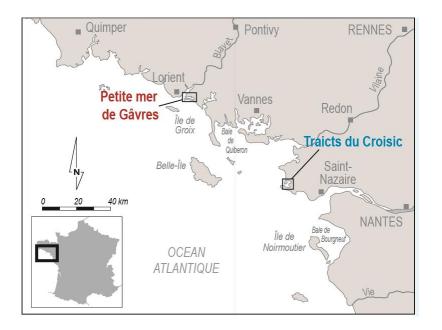

8

- Trois questions essentielles :
- Comment identifier une couche marine et la différencier des faciès traditionnels lagunaires, marécageux ou lacustres ?
 - Analyse statistique: nombreux indicateurs croisés pour caractériser la provenance des sédiments
 - Détection des dépôts marins allochtones aux marais




- Trois questions essentielles :
- Comment identifier une couche marine et la différencier des faciès traditionnels lagunaires, marécageux ou lacustres ?
 - Analyse statistique: nombreux indicateurs croisés pour caractériser la provenance des sédiments
 - Détection des dépôts marins allochtones aux marais
 - ACP et dendrogramme pour un test de ratios

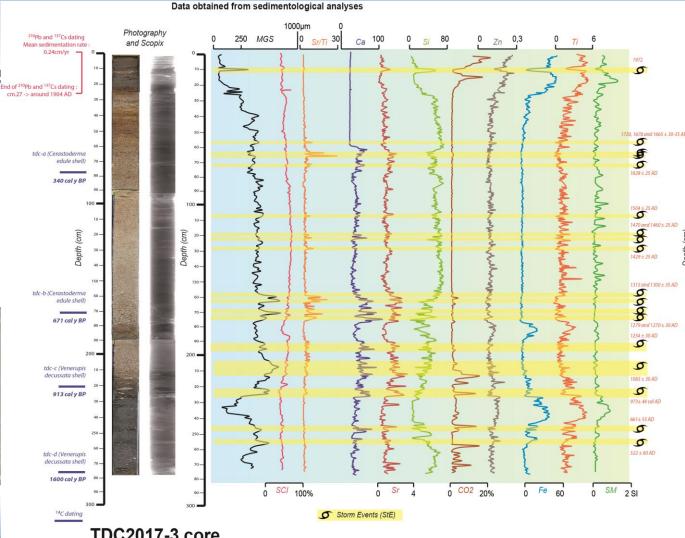
- Trois questions essentielles :
- Comment identifier une couche marine et la différencier des faciès traditionnels lagunaires, marécageux ou lacustres ?
 - Analyse statistique : nombreux indicateurs croisés pour caractériser la provenance des sédiments
 - Détection des dépôts marins allochtones aux marais
 - ACP et dendrogramme pour un test de ratios
- A quelle date la couche marine identifiée a-t-elle été déposée dans cet environnement de dépôt côtier ?
 - Datations isotopiques au ¹⁴C, ²¹⁰Pb et ¹³⁷Cs
 - Estimation de l'âge de tous les faciès des carottes prélevées


- Trois questions essentielles :
- Comment identifier une couche marine et la différencier des faciès traditionnels lagunaires, marécageux ou lacustres ?
 - Analyse statistique : nombreux indicateurs croisés pour caractériser la provenance des sédiments
 - Détection des dépôts marins allochtones aux marais
 - ACP et dendrogramme pour un test de ratios
- A quelle date la couche marine identifiée a-t-elle été déposée dans cet environnement de dépôt côtier ?
 - Datations isotopiques au ¹⁴C, ²¹⁰Pb et ¹³⁷Cs
 - Estimation de l'âge de tous les faciès des carottes prélevées

- Comment s'assurer que cette couche marine provient bien d'un aléa naturel passé?
 - Croisement de la datation de la couche avec les données historiques
 - Test de la méthode dendrochronologique des analyses de disproportions des largeurs de cernes de croissance

ANALYSE DES CAROTTES SEDIMENTAIRES

- Etude menée dans deux lagunes
 Traicts du Croisic Petite mer de Gâvres
- Présentation de la carotte des TDC



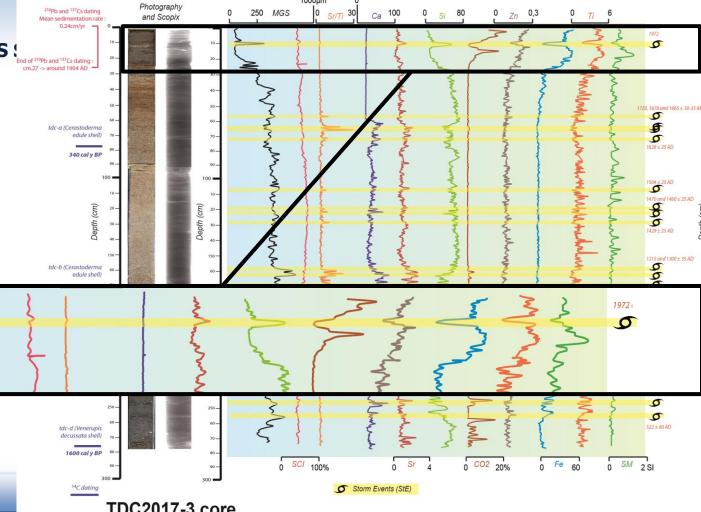
ANALYSE DES CAROTTES!

- Etude menée dans deux lagunes
 Traicts du Croisic Petite mer de Gâvres
- Présentation de la carotte des TDC
- Granulométrie, géochimie, matière organique, luminosité et susceptibilité magnétique
- Extraction d'évènements extrêmes passés

Principe et méthode

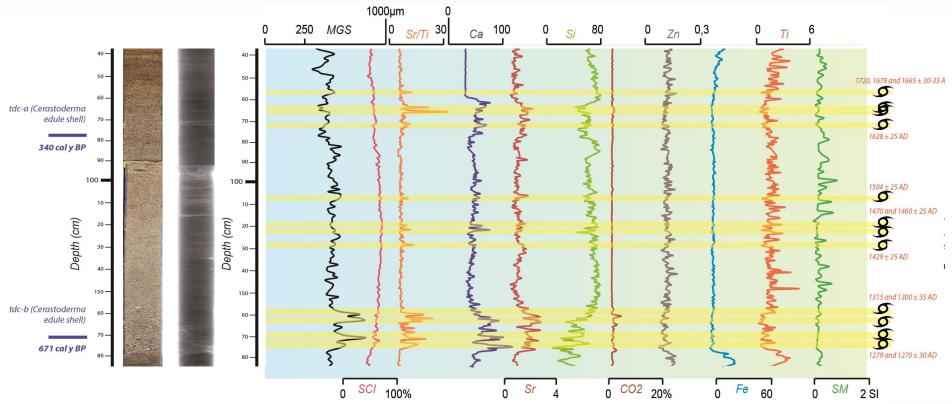
Résultats

ANALYSE DES CAROTTES


Exemple de 1972

- Pics de sable, de clarté, de Sr et de Si
- Chutes de CO₂, Zn, Fr, Ti et de SM

20 **–** 30 **–**


Résultats

Principe et méthode

Data obtained from sedimentological analyses

ANALYSE DES CAROTTES SEDIMENTAIRES

16

Focus sur cinq évènements majeurs : 1) couche marine datée 1315 AD (635 BP)

➤ Impacts sédimentologiques potentiels : Ile d'Yeu (YPSa : env. 600 – 550 cal y BP) - TDC (635±35 cal y BP) - PMG (625±80 cal y BP) - Baie d'Audierne (env. 615 BP) - Pertuis charentais (env. 650 cal y BP)

17

Focus sur cinq évènements majeurs : 1) couche marine datée 1315 AD (635 BP)

► Impacts sédimentologiques potentiels : Ile d'Yeu (YPSa : env. 600 – 550 cal y BP) - TDC (635±35 cal y BP) - PMG (625±80 cal y BP) - Baie d'Audierne (env. 615 BP) - Pertuis charentais (env. 650 cal y BP)

Selon les données historiques : Hiver 1351 – 1352 AD ?

Focus sur cinq évènements majeurs : 1) couche marine datée 1315 AD (635 BP)

➤ Impacts sédimentologiques potentiels : Ile d'Yeu (YPSa : env. 600 – 550 cal y BP) - TDC (635±35 cal y BP) - PMG (625±80 cal y BP) - Baie d'Audierne (env. 615 BP) - Pertuis charentais (env. 650 cal y BP)

Selon les données historiques : Hiver 1351 – 1352 AD ?

- Territoire de Ré: « En 1352, un vimaire inonde une grande partie de l'île » (JL Sarrazin, 2012)
- Marais salants Olonnais submergés par la mer (JL Sarrazin, 2012)
- Noirmoutier en partie inondée durant env. 50 années par l'océan : il fut un « temps ou le païs souloit estre en estat et non occuppé de la mer »
- Thèse d'E. Athimon :
- « Celle-ci, en affectant la fonction même des marais salants, a paralysé l'activité salicole de ces territoires; au point que, incapables de remplir une partie de leurs fonctions productrices, ainsi que les revenus qui usuellement en découlent, du chômage a pu s'en suivre ».
- « L'une des manifestations météorologiques les plus violentes et dramatiques du dernier millénaire sur la côte atlantique française »

2) tempête de 1469 AD (PMG : 1445 \pm 40 AD et TDC : 1470 \pm 25 AD)

- Coefficient de marée d'env. 106 le 28 janvier 1469 (Thèse E. Athimon)
- Marais salants et digues de Bouin détruites, perte de 1500t de sel, majeures pertes économiques (Athimon and Maanan, 2018)
- > 30m de brèches dans les marais salants -> Baisses des taxes relevés dans les archives (JL Sazzazin, 2012 ; 2005)
- Terres devenues stériles suite à l'événement (Athimon et al., 2016)
- Impacts venteux marquants près d'Angers, chute du clocher de l'église de Saint-Aubin, arbres déracinés (Athimon and Maanan, 2018)

Résultats Discussion 2

2) tempête de 1469 AD (PMG : 1445 \pm 40 AD et TDC : 1470 \pm 25 AD)

- Coefficient de marée d'env. 106 le 28 janvier 1469 (Thèse E. Athimon)
- Marais salants et digues de Bouin détruites, perte de 1500t de sel, majeures pertes économiques (Athimon and Maanan, 2018)
- > 30m de brèches dans les marais salants -> Baisses des taxes relevés dans les archives (JL Sazzazin, 2012 ; 2005)
- > Terres devenues stériles suite à l'événement (Athimon et al., 2016)
- Impacts venteux marquants près d'Angers, chute du clocher de l'église de Saint-Aubin, arbres déracinés (Athimon and Maanan, 2018)

3) tempête de 1645 AD (TDC : 1665 \pm 30 AD)

- > Submersions marines : Ile de Ré, d'Aix et d'Oléron, La Rochelle, Marennes, Arvert et Saint-Sornin (Thèse E. Athimon)
- Naufrage d'un bateau imposant (Thèse E. Athimon)
- 500 000 écus de pertes en sel (Thèse E. Athimon)
- Cathédrales de Saintes et Poitiers détruites (Thèse E. Athimon)
- Tempête qualifiée d'"horrible", ou "terrible", évènement caractérisé d'"exceptionnel" (Thèse E. Athimon)

21

4) tempête de 1711 AD (TDC : 1678 ± 35 AD)

- Surcote importante à la Faute sur Mer (Garnier et al., 2018)
- Ile de Ré très sérieusement submergée (Athimon et al., 2016)
- Décès d'une personne après l'effondrement de l'église de Thouars (Imbert, 1871)
- Plus grand «déracinement » de la forêt de Fontainebleau du XVIIIe siècle (Imbert, 1871)

4) tempête de 1711 AD (TDC : 1678 ± 35 AD)

- Surcote importante à la Faute sur Mer (Garnier et al., 2018)
- Ile de Ré très sérieusement submergée (Athimon et al., 2016)
- Décès d'une personne après l'effondrement de l'église de Thouars (Imbert, 1871)
- Plus grand «déracinement » de la forêt de Fontainebleau du XVIIIe siècle (Imbert, 1871)

5) tempête de 1751 AD (TDC : 1720 \pm 35 AD et 1775 \pm 30 AD)

- Eglise de la Bruffière en partie détruite (Athimon and Maanan, 2018)
- > Submersions à Bouin, aux Sables, impacts venteux à Nantes, Thouars et Legé Nombreux décès (Thèse E. Athimon)
- A Thouars « les gens ne savaient pas ou aller pour être en sécurité » (SHAAPT, 1751)
- Eglises de Seuilly, Rennes, Le Mans, Poitiers, Angers en partie détruites (Thèse E. Athimon)
- A La Ploueze, « dégâts si importants que les personnes on cru qu'ils se sont déroulés en même temps qu'un tremblement de terre » (Quenet, 2005)
- Requête de l'Amirauté de Nantes de décharger les cargos le plus vite possible à Paimbeuf (Athimon et al., 2016)

23

E. Athimon, T. Sauzeau, JL. Sarrazin

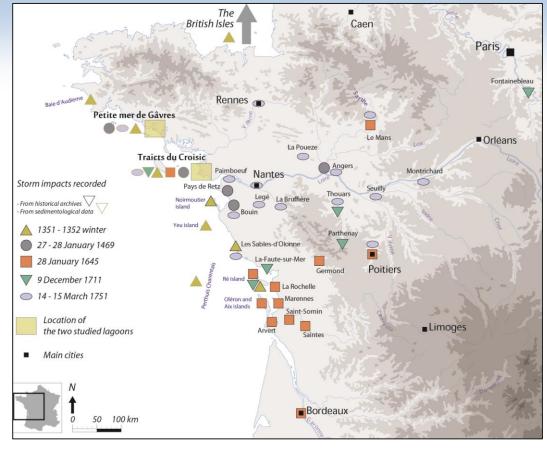
Archives départementales 44
 (C672 15 – G473 folio 52 – 1751)

EXTRAIT DES REGISTRES DU GREFFE DU SIEGE ROYAL DE LA

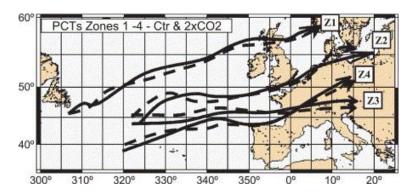
Du Mardi seizième Mars mil sept cens cinquante-un.

R. le Procureur du Roi Sindic a remontré, qu'il a été informé que la Tempête s'est fait sentir avec tant de violence dans la Rade de Painbœus & aux environs, qu'il est arrivé des accidens sâcheux à tous les Navires qui y étoient moüillés; Que pour leur procurer les secours dont le Commerce a besoin dans les circonstances présentes, il y a nécessité d'enjoindre à tous les Négocians & Marchands de faire décharger dans vingt-quatre heures les Marchandises qu'ils peuvent avoir et Chaloupes, Gabarres & Gabaraux sur la Riviere dans le Port de Nantes, pour les Maîtres de Chaloupes & Gabariers être en état de donner les secours qui leur seront demandés: Et a requis que la Sentence qui interviendra soit lûë, publiée & affichée, à ce que personne n'en ignore. Et a signé.

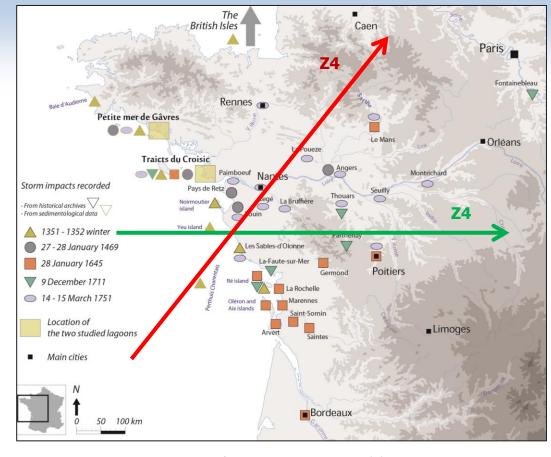
Signé, RETAU DU FRESNE.


LE SIÈGE a décerné Acte au Procureur du Roi Sindic de sa Remontrance, & y saisant droit : Enjoint à tous Négocians & Marchands qui ont du Bled, Moruës, ou autres Marchandises en Chaloupes, Gabarrey & Gabaraux sur la Riviere dans le Port de cette Ville, de les saire décharger dans lingt-quatre heures, sur les peines Port de cette Ville, de les saire décharger dans lingt-quatre heures, sur les peines qui y échéent, pour les Maîtres de Chaloupes, Gabarres & Gabaraux être en état de qui y échéent, pour les Maîtres de Commerce sur les Ordres qui leur seront donnés.

I. EMPRISE SPATIALE

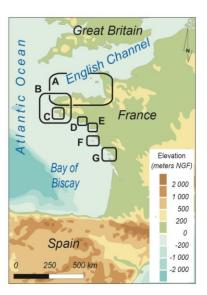

Storm mentioned	Location	Impact	Data used	Source
1351-1352 AD	Petite Mer de Gâvres	Marine deposit dated 1325 ± 80 AD	Sedimentology	This study
1351-1352 AD	Traicts du Croisic	Marine deposit dated 1315 ± 35 AD	Sedimentology	This study
1351-1352 AD	Yeu Island	Marine deposit dated 600-500 cal y BP (1350- 1450 AD)	Sedimentology	Pouzet et al., 2018 ⁶
1351-1352 AD	Baie d'Audierne	Marine deposit dated 1335 AD	Sedimentology	Van Vliet Lanoe et al., 2014a ²⁰
1351-1352 AD	Pertuis Charentais	Coarse grained sedimentation pulse	Sedimentology	Poirier et al., 2017 ¹⁹
1351-1352 AD	NW Europe	European Atlantic Stormy Event estimated 600-300 cal y BP (1350-1650 AD)	Sedimentology/ Bibliography	Pouzet et al., 2018 ⁶
1351-1352 AD	NW Europe	Storminess Event estimated 600-300 cal y BP (1350-1650 AD)	Sedimentology/ Bibliography	Sorrel et al., 2012 ⁷
1351-1352 AD	British Isles	Storm impacts phase between 700 and 550 cal y BP (1250-1400 AD)	Several geological analyses/ Bibliography	Devoy et al., 1996 ³¹ ; Hansom and Hall, 2009 ³² ; Oldfield et al. ³³ , 2010; Wilson et al., 2004 ³⁴
1351-1352 AD	Outer Hebrides, (Scotland)	High period of sand mobilisation between 692 and 504 cal y BP (1258- 1446 AD)	Sedimentology	Gilbertson et al., 1999

Impacts sédimentologiques, exemple pour l'évènement de 1351 AD

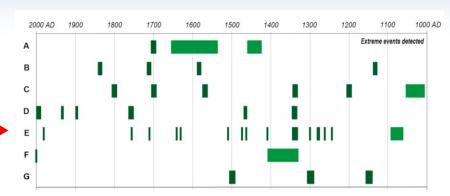


> Emprise spatiale des évènements les plus marquants (impacts issus des archives sédimentologiques et historiques, travail non exhaustif)

II. TRAJECTOIRES PASSEES?



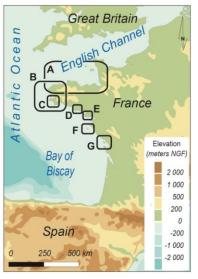
The principal cyclone tracks (PCTs) affecting European Atlantic coastal Zones 1 to 4 corresponding to storms identified in the North Atlantic (solid lines). The dashed lines show changes in the PCTs for the scenario-run (2×CO₂) experiment (Lozano, 2004).


Emprise spatiale des évènements les plus marquants (impacts issus des archives sédimentologiques et historiques, travail non exhaustif)

III. INFLUENCES OCEANO-CLIMATIQUES

Sedimentological studies along the NW French coast:

- A: North of Brittany and west Cotentin (Van Vliet Lanoe et al., 2017) 51
- B: NE and SW Brittany (Regnauld, 1999) 5
- C : Audierne Bay (Van Vliet Lanoe et al., 2014) 20 D : Petite mer de Gâvres (This study)
- E: Traicts du Croisic (This study) F: Yeu island (Pouzet et al., 2018)
- G: Pertuis charentais (Poirier et al., 2017) 19

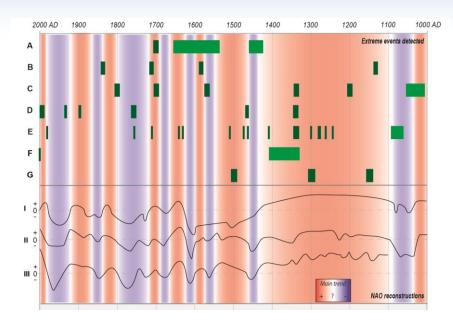


Pour plus d'informations: Pouzet, P. & Maanan, M (2020b). Climatological influences on major storm events during the last millennium along the Atlantic coast of France.

Nature Scientific Reports 10, 12059

https://www.nature.com/articles/s41598-020-69069-w

III. INFLUENCES OCEANO-CLIMATIQUES

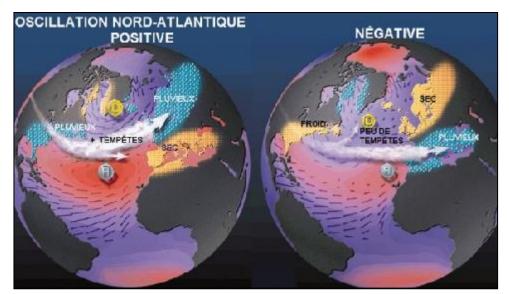

Sedimentological studies along the NW French coast:

- A: North of Brittany and west Cotentin (Van Vliet Lanoe et al., 2017) 51
- B: NE and SW Brittany (Regnauld, 1999) 5
- C: Audierne Bay (Van Vliet Lanoe et al., 2014) 20
- D : Petite mer de Gâvres (This study)
- E : Traicts du Croisic (This study)
- F: Yeu island (Pouzet et al., 2018) ⁶
 G: Pertuis charentais (Poirier et al., 2017) ¹⁹
 - Precise extreme
- Estimated storm periods

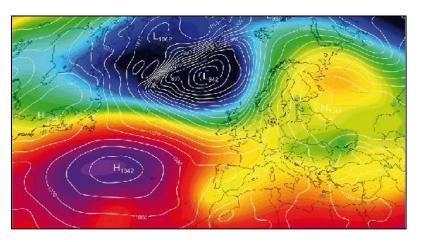
Comparisons of the chronologies with:

- Three North Atlantic Oscillation reconstructions during the last millenium (I: Baker et al., 2015 a.; II: Proctor et al., 2000 a.; III: Trouet et al., 2009 b) with interpretation of the successive NAO positive phases in red and negative phases in violet.

Discussion

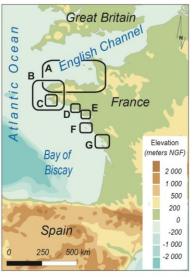


Pour plus d'informations : Pouzet, P. & Maanan, M (2020b). Climatological influences on major storm events during the last millennium along the Atlantic coast of France.


Nature Scientific Reports 10, 12059

https://www.nature.com/articles/s41598-020-69069-w

III. INFLUENCES OCEANO-CLIMATIQUES


(Cassou, 2004)

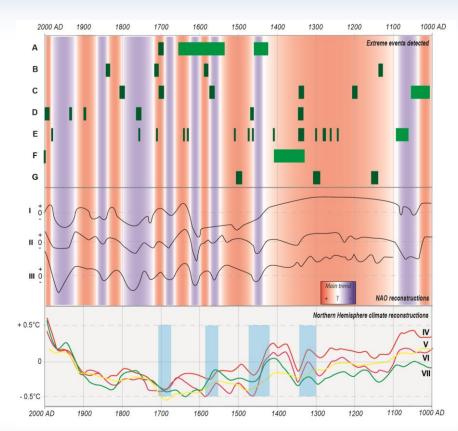
Mise en lumière de la position de la dépression d'Islande et de l'Anticyclone des Açores à travers le run GFS 1.0° du 14 janvier 2018 06Z +18H (échéance 15 janvier 2018 0h UTC) via Infoclimat. Pression au niveau de la mer, géopotentiel et température à 500hPa.

Discussion

III. INFLUENCES OCEANO-CLIMATIQUES

Sedimentological studies along the NW French coast :

- A: North of Brittany and west Cotentin (Van Vliet Lanoe et al., 2017) 51
- B: NE and SW Brittany (Regnauld, 1999) 5
- C: Audierne Bay (Van Vliet Lanoe et al., 2014) 20
- D : Petite mer de Gâvres (This study)
- E: Traicts du Croisic (This study)
 F: Yeu island (Pouzet et al., 2018)
- G: Pertuis charentais (Poirier et al., 2017) 19
- Precise extreme event dating
- Estimated storm periods


Comparisons of the chronologies with:

- Three North Atlantic Oscillation reconstructions during the last millenium (I : Baker et al., 2015 $^{\rm st}$; II : Proctor et al., 2000 $^{\rm st}$; III : Trouet et al., 2009 $^{\rm st}$) with interpretation of the successive NAO positive phases in red and negative phases in violet.
- Four temperature anomaly curves (from 1881-1980) extracted from the IPCC Fifth Assessment Report (Pachauri et al., 2014) ⁵⁶. Raw data from Pollack and Smerdon, 2004 ⁵⁶ (IV, red curve); Ljungvist, 2010 ⁵⁷ (V, yellow curve); Mann et al., 2009 ⁵⁶ (VII, pink curve) and Hegerl et al., 2007 ⁵⁶ (VII, green curve). Four phases of decreasing temperatures are displayed in blue, as they are linked to storm impacts recorded in several sites presented in the sedimentological review.

Pour plus d'informations : Pouzet, P. & Maanan, M (2020b). Climatological influences on major storm events during the last millennium along the Atlantic coast of France.

Nature Scientific Reports 10, 12059

https://www.nature.com/articles/s41598-020-69069-w

